

Sources of variation and climatic drivers of grass functional traits

Carla Roybal, Brad Butterfield

Merriam-Powell Center for environmental Research and

Department of Biological Sciences, Northern Arizona University

Restoration: The applied framework

- Can we predict the best source of seeds easily?
- Evaluating performance in many different environments is expensive when dealing with many seed sources.

Functional traits and local adaptation

 If easy-to-measure traits correlate strongly with climate among populations, we put the right seed in the right place based on their trait values.

Two scenarios for trait-based seed sourcing:

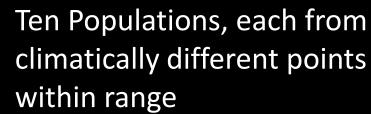
1) Trait climate relationships are the same among all species (seed selection is really easy!)

OR

2) Species exhibit individualistic traitenvironment relationships (Life is hard. But possible).

The Punch line: We found support for #2.

Trait-climate relationships are strong in many cases


BUT

Those relationships vary among species.

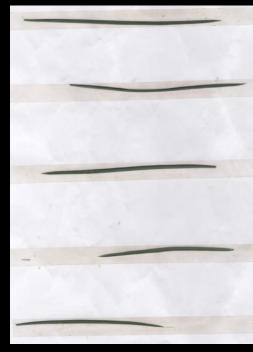
(Life is hard).

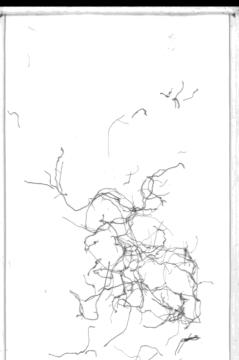
Experimental Set up

- Koeleria macrantha (prairie junegrass)
- Poa secunda (Sandberg bluegrass)
- Pseudorogeneria spicata (bluebunch wheatgrass)
- Leymus cinereus (basin wildrye)
- Elymus elymoides (squirreltail)
- Poa fendleriana (muttongrass)
- Aristida purpurea (purple threeawn)
- Pleuraphis jamesii (galleta grass)
- Bouteloua gracilis (blue grama)

Ten Reps in each population

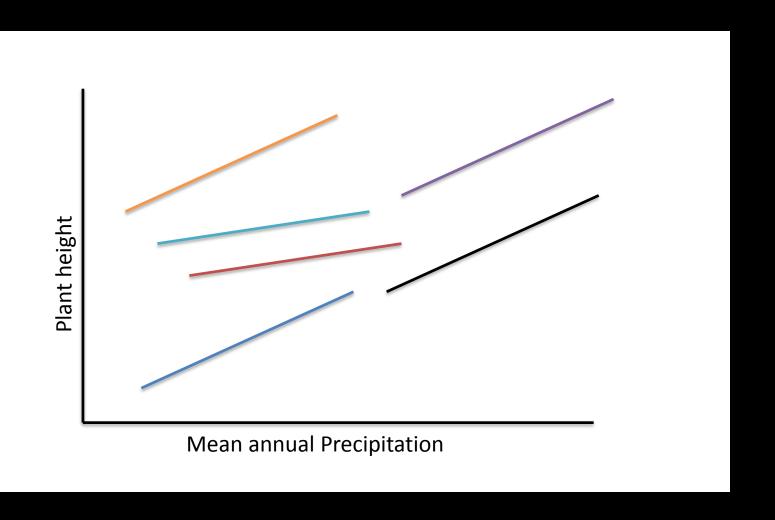
Seeds of Success!

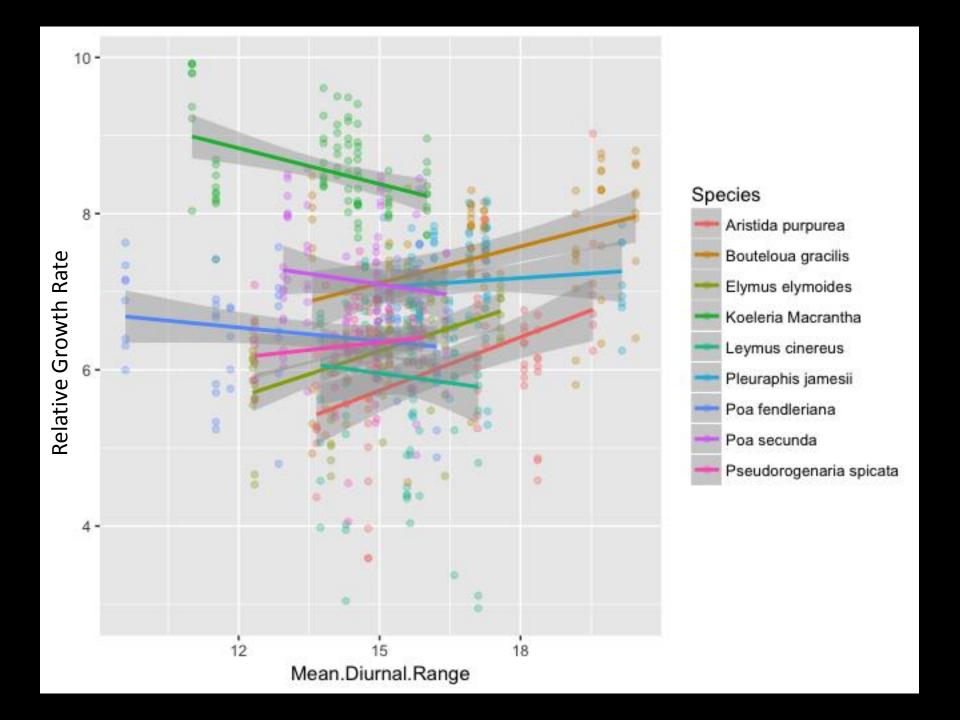

All accessions were from Seeds of Success collections.


This is a great resource for researchers working on these sorts of questions!

Traits we measured

- Specific Leaf Area (SLA)
- Fine and coarse Specific Root Length (SRL)
- Fine and coarse Root Dry Matter Content (RDMC) proxy for tissue density
- Root to Shoot ratio
- Relative Growth Rate
- Height
- Above and belowground biomass


Results



Some dimensions of climate are better predictors of functional traits than others.

Response can be species specific.

Life is easy scenario:

Mean Diurnal Range is a consistently good predictor!

мат	MDR	T.seas	P.Seas	МАР	PDO	Avg.VPD	warmdrv15	warmdry25	warmwet15	AFT toPFT
	10121	1.5005	110000	1417 (1		/ togiti b	Trainiai y 15			
х	х	x	x			x	x	x		х
x	x							x		
	x		x		x	x	x		x	x
х	x	x			x		x	x		x
	x	x	x		х					
	x			x						
х	x		x		х	x			x	
х	x				х					
· ·	((x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x						X X	

Conclusions and Implications

- We need to better understand what drives local adaptation in different species
- Species exhibit unique relationships with climate that need to be explored on a species-by-species basis.

Acknowledgements

- Troy Wood
- Phil Patterson
- Rachel Hosna
- Small army who helped me harvest
- Funding provided by BLM Colorado Plateau Native Plant Program and Great Basin Native Plant Project

