A trait-based approach to using biological soil crusts in Colorado Plateau restoration efforts

Sasha Reed, Scott Ferrenberg, Colin Tucker, Jayne Belnap, Matt Bowker
Dryland biocrusts perform numerous critical ecosystem functions

- Increased soil stability
- Increased H$_2$O infiltration

Photo by Daniel Bryant

Increased soil fertility

Ferrenberg et al. (2018) Plant & Soil
Biological soil crusts

Lichens

Moss

1 cm

Photo stolen from Matt Bowker
Great success growing biocrusts in the greenhouse

Photos stolen from Matt Bowker
Trait-based approaches to community restoration

“Functional traits can...describe the composition of communities through indices that...explain factors that drive community assembly, biotic effects on ecosystem processes or both.”

Butterfield & Suding (2012) *Journal of Ecology*
What do we want from biocrust restoration materials?

- Suitability for materials development
- Survivability, now and future
- Soil stability, quickly
- Fertility, the right amount
- Increased infiltration of precipitation
- Soil temperature and energy balance
- Photosynthetic rates
A trait-based approach for biocrust restoration

Site near Moab, UT on the Colorado Plateau
The abundance of biocrust is often quite high on the CP.

Torres-Cruz et al. (2018) *Plant & Soil*
Strong differences in N_2 fixation

Biocrusts can be the dominant source of new nitrogen to Colorado Plateau ecosystems

Torres-Cruz et al. (2018) *Plant & Soil*
And in tissue nitrogen concentrations

Tissue nitrogen can relate to photosynthesis and nitrogen inputs

Torres-Cruz et al. (2018) Plant & Soil
Spectral properties vary among biocrust organisms

With implications including photosynthetic rates, albedo, soil temperature, and remote sensing indices.

Rutherford et al. (In Prep)
Thank you!

Brad Butterfield, Kara Dohrenwald, Anita Antoninka, Sue Bellagamba, Kristina Young, Carla Roybal
Colorado Plateau Native Plant Program
Joint Fire Science Program
USGS Ecosystems Mission Area
National Park Service
Bureau of Land Management