A Novel, Landscape Approach to Constructing Plant-Pollinator Networks Important for Greater Sage Grouse Conservation and Habitat Restoration

Sarah Barlow and Bruce Pavlik
Conservation Department
Red Butte Garden and Arboretum
Salt Lake City, Utah 84105
Chick Survivorship Linked to Vegetation Structure and Food Resource Abundance

Gregg and Crawford 2009 J. Wildlife Man. 73:904-913
Non-Pollinating Insects – GSG Chick Food

Hemileuca hera (Lepidoptera)
Strawberry Reservoir, Wasatch County, UT

Eleodes (Tenebrionidae)
Florida Canyon, Pima Co., AZ

Polyphylla (Scarabaeidae)
Oldtown, Bonner County, ID

Chrysomela (Chrysomelidae)
Lyons, Boulder County, CO

Anabrus simplex (Orthoptera)
Austin, Lander County, NV

Hymenoptera
Big Gypsum Valley nr Utah border, San Miguel Co, CO

Pogonomyrmex (Hymenoptera)
Boulder, Boulder County, CO
Native Forbs – Esp. Asteraceae and Fabaceae – GSG Chick Food

Microsteris gracilis (Phacelia gracilis)

Astragalus geyeri

Agoseris heterophylla

Achillea millefolium

Taraxacum officinale

http://www.americansouthwest.net/
Plant-Pollinator Network

Eriogonum Astragalus Microsteris Achillea Lupinus Taraxacum

Bee 1 Bee 2 Bee 3 Bee 4 Bee 5 Bee 6

Forb fecundity
Plant-Pollinator Network

Keystone Bee

Specialist Bee

Forb fecundity

Eriogonum
Astragalus
Microsteris
Achillea
Lupinus
Taraxacum
What are the vegetation characteristics associated with forb diversity and abundance in N. Utah?

Shrub/grass dominants – height, cover
GSG forbs – phenoseason variation
Landscape-level variation

What pollinators support GSG forb species critical to brood survivorship?

Apoidea/Diptera/Lepidoptera diversity
Visitation rates to GSG forb species
Landscape-level variation

What are the relationships between non-pollinating insects, forb diversity and vegetation characteristics?

How do pollinator identity and visitation rate affect forb fecundity?
What are the vegetation characteristics associated w/ forb diversity and abundance in N. Utah?

- Shrub/grass dominants – height, cover
- GSG forbs – phenoseason variation
- Landscape-level variation

What pollinators support GSG forb species critical to brood survivorship?

- Apoidea/Diptera/Lepidoptera diversity
- Visitation rates to GSG forb species
- Landscape-level variation

What are the relationships between non-pollinating insects, forb diversity and vegetation characteristics?

How do pollinator identity and visitation rate affect forb fecundity?
Take-Homes (in progress)

• 3 distinct *Artemesia* communities w 4/forb assemblages

• *A. tridentata* most homogeneous, low forb diversity, low VR

• *A. nova* most heterogenous, high forb diversity

• Signif. effects of location and phenoseason – short window of pollinator support and pollen movement in early summer

• Across sites, forb species vary greatly in pollinator support, VR

• The same forb species attract different pollinators at different rates across the landscape
Study Sites
Study Sites

BOX1

BOX2

RICH1

RICH2

RICH3 (VEG)
Monitoring Sites

LEK

3 mile nesting zone

Forbs

Pollinators Rana

Vegetation

50m
1. Vegetation Description

- Linear cover (grasses and shrubs), *Artemisia* sp. height, and forb abundance and cover (x3 pheno)

![Achillea millefolium](image1.jpg) ![Microsteris gracilis (Phacelia gracilis)](image2.jpg) ![Agoseris heterophylla](image3.jpg) ![Astragalus geyeri](image4.jpg)
Artemisia height

ANOVA, site, $F = 19.09$, $P < 0.001$

species, $F = 11.40$, $P < 0.001$

Total linear cover (grasses and shrubs)

ANOVA, site, $F = 5.00$, $P < 0.01$
Linear Cover of Grasses and Shrubs

PERMANOVA, site, F = 5.78, R2 = 0.61, P < 0.001
PERMDISP, site, F = 4.40, P < 0.05
Forb Abundance, Cover and Composition

1 = early summer
2 = mid summer
3 = late summer

Diversity

Shannon Diversity

BOX1 BOX2 RICH1 RICH2 RICH3
1 2 3 1 2 3 1 2 3 1 2 3 2 3

1 = early summer
2 = mid summer
3 = late summer
2. Using Rana to Document Plant-Insect Interactions

- Pollination – essential for self-maintaining forb populations
- Herbivory – attracting supporting non-pollinating insects
Rana Pollinator Monitoring

- 4 sites, late May-late July
- 14 forb species
- 75 individuals
- 3047 hrs observation
- 1762 foraging visits
Rana Pollinator Monitoring

https://www.youtube.com/watch?v=anLmhcCvqb8
Visitation Rates (V_R)

resource abundance, pollen movement, pollinator abundance

Kruskal-Wallis test, species, P<0.001
Visitation rates:

-species & site-specific

Species*site P<0.01
Why does pollinator V_R vary?

Positive correlation with forb diversity (H), negative with *Artemesia* ht

CAPSCALE – semi-parametric, constrained ordination
3. Forb Seed Collections for Restoration
3. Forb Seed Collections for Restoration
SOS Collections

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Common Name</th>
<th># Plants Sampled</th>
<th>Seed Estimate</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senecio integerrimus</td>
<td>lamb-tongue ragwort</td>
<td>87</td>
<td>1,150</td>
<td>Rich</td>
</tr>
<tr>
<td>Balsamorhiza sagittata</td>
<td>arrow-leaf balsamroot</td>
<td>110</td>
<td>1,000</td>
<td>Box Elder</td>
</tr>
<tr>
<td>Lupinus argenteus</td>
<td>silver-stem lupine</td>
<td>213</td>
<td>9,500</td>
<td>Rich</td>
</tr>
<tr>
<td>Eriogonum umbellatum</td>
<td>sulphur flower buckwheat</td>
<td>145</td>
<td>4,500</td>
<td>Rich</td>
</tr>
<tr>
<td>Eriogonum umbellatum</td>
<td>sulphur flower buckwheat</td>
<td>160</td>
<td>18,500</td>
<td>Rich</td>
</tr>
<tr>
<td>Eriogonum heracleoides</td>
<td>parsnip-flower buckwheat</td>
<td>50</td>
<td>18,000</td>
<td>Box Elder</td>
</tr>
<tr>
<td>Achillea millefolium</td>
<td>common yarrow</td>
<td>150</td>
<td>1,000,000</td>
<td>Wasatch</td>
</tr>
<tr>
<td>Eriogonum heracleoides</td>
<td>parsnip-flower buckwheat</td>
<td>250</td>
<td>10,000</td>
<td>Wasatch</td>
</tr>
<tr>
<td>Potentilla gracilis</td>
<td>graceful cinquefoil</td>
<td>150</td>
<td>600,000</td>
<td>Wasatch</td>
</tr>
<tr>
<td>Achillea millefolium</td>
<td>common yarrow</td>
<td>71</td>
<td>1,000,000</td>
<td>Wasatch</td>
</tr>
</tbody>
</table>
Take-Homes (in progress)

- 3 distinct *Artemesia* communities w 4/forb assemblages
- *A. tridentata* most homogeneous, low forb diversity, low V_R
- *A. nova* most heterogenous, high forb diversity
- Signif. effects of location and phenoseason – short window of pollinator support and pollen movement in early summer
- Across sites, forb species vary greatly in pollinator support, V_R
- The same forb species attract different pollinators at different rates across the landscape
Expected Outcomes

• Pollinator Support Evaluation
 – identify keystones, specialists and networks of N. Utah

• Comparison of Pollinator Support Indices
 - between forb species and sites (visitation rates + diversity)

• Native forb seed collections for pollinators

• Site-specific restoration? (target taxa, increase forb and insect diversity, pollinator support, seed zones)
Acknowledgements

DOI Bureau of Land Management

Peggy Olwell – Pollinator Initiative and GSG Conservation
Adrienne Pilmanis – funding, connections, standard keeping

Mark Williams
Matt Preston
Brad Jessop
Tyler Nelson
Marcia Wineteer

Conservation, Red Butte Garden
Alyssa Chapman
Drew Potter
Avery Uslanean

Insect ID
Dr. Vince Tepedino