Seedling traits of two promising native grasses at early developmental stages

Magda Garbowski, Cynthia Brown, Danielle Johnston

Colorado Plateau Native Plant Program Annual Meeting
February 6, 2018
Traits and ecological processes

<table>
<thead>
<tr>
<th>Growth Rate</th>
<th>Specific Leaf Area</th>
<th>Leaf Dry Matter Content</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/day</td>
<td>cm²/g</td>
<td>Dry mass/saturated mass (g/g)</td>
<td>cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Root Mass Fraction</th>
<th>Specific Root Length</th>
<th>Root Diameter</th>
<th>Total Root Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root mass /Total plant mass (g/g)</td>
<td>Length of roots / weight of roots (cm/g)</td>
<td>Average root diameter (mm)</td>
<td>Total root length (cm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Traits and ecological processes

Growth Rate
- Positively associated with **shade tolerance**, negatively associated with **drought tolerance** (Suding 2003)
 - High SLA has been linked to efficient carbon capture that leads to rapid growth and competitive ability
 - Low SLA has been linked to leaf longevity and stress tolerance

Specific Leaf Area
- High SLA has been linked to efficient carbon capture that leads to rapid growth and competitive ability
- Low SLA has been linked to leaf longevity and stress tolerance

Leaf Dry Matter Content
- High leaf dry matter content has been linked with nutrient conservation strategies (Bochet 2015)

Height
- Competitive ability, growth strategies

Growth Rate
<table>
<thead>
<tr>
<th>Growth Rate</th>
<th>Specific Leaf Area</th>
<th>Leaf Dry Matter Content</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/day</td>
<td>cm²/g</td>
<td>Dry mass/saturated mass (g/g)</td>
<td>cm</td>
</tr>
</tbody>
</table>

Specific Leaf Area
- Positively associated with **shade tolerance**, negatively associated with **drought tolerance** (Suding 2003)

Leaf Dry Matter Content
- High leaf dry matter content has been linked with nutrient conservation strategies (Bochet 2015)

Height
- Competitive ability, growth strategies

Root Mass Fraction
- High RMF has been linked to survival in invaded systems (Leger 2015, 2017)
- High RMF has been linked to increased competitive ability

Specific Root Length
- High SRL has been linked to high above ground growth rates (Laughlin 2010) and competitive ability (Funk 2016)

Root Diameter
- High root diameter has been related to stress tolerance (Bennett 2016)

Total Root Length
- Higher total root length has been linked to greater competitive abilities (Ravenek 2016)

Root Mass Fraction
<table>
<thead>
<tr>
<th>Root Mass Fraction</th>
<th>Specific Root Length</th>
<th>Root Diameter</th>
<th>Total Root Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root mass /Total plant mass (g/g)</td>
<td>Length of roots / weight of roots (cm/g)</td>
<td>Average root diameter (mm)</td>
<td>Total root length (cm)</td>
</tr>
</tbody>
</table>

- High RMF has been linked to survival in invaded systems (Leger 2015, 2017)
- High RMF has been linked to increased competitive ability

- High SRL has been linked to high above ground growth rates (Laughlin 2010) and competitive ability (Funk 2016)

- High root diameter has been related to stress tolerance (Bennett 2016)

- Higher total root length has been linked to greater competitive abilities (Ravenek 2016)
Traits and ecological processes

<table>
<thead>
<tr>
<th>Growth Rate</th>
<th>Specific Leaf Area</th>
<th>Leaf Dry Matter Content</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/day</td>
<td>cm²/g</td>
<td>Dry mass/saturated mass (g/g)</td>
<td>cm</td>
</tr>
<tr>
<td>- Positively associated with shade tolerance, negatively associated with drought tolerance (Suding 2003)</td>
<td>- High SLA has been linked to efficient carbon capture that leads to rapid growth and competitive ability - Low SLA has been linked to leaf longevity and stress tolerance</td>
<td>- High leaf dry matter content has been linked with nutrient conservation strategies (Bochet 2015)</td>
<td>- Competitive ability, growth strategies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Root Mass Fraction</th>
<th>Specific Root Length</th>
<th>Root Diameter</th>
<th>Total Root Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root mass /Total plant mass (g/g)</td>
<td>Length of roots / weight of roots (cm/g)</td>
<td>Average root diameter (mm)</td>
<td>Total root length (cm)</td>
</tr>
<tr>
<td>- High RMF has been linked to survival in invaded systems and increased competitive ability (Leger 2015, 2017)</td>
<td>- High SRL has been linked to high above ground growth rates (Laughlin 2010) and competitive ability (Funk 2016)</td>
<td>- High root diameter has been related to stress tolerance (Bennett 2016)</td>
<td>- Higher total root length has been linked to greater competitive abilities (Ravenek 2016)</td>
</tr>
</tbody>
</table>
Seedling traits

– Seed and seedling traits can greatly inform recruitment outcomes (Larson 2015)
– Competitive advantages based on growth rates may be gained in the first 2-3 weeks post-germination (Reichmann et al. 2016)
Among population variation may influence community structure and ecosystem function (Des Roches, 2017)

The ecological importance of intraspecific variation

Simone Des Roches, David M. Post, Nash E. Turley, Joseph K. Bailey, Andrew P. Hendry, Michael T. Kinnison, Jennifer A. Schweitzer and Eric P. Balke

The return of the variance: intraspecific variability in community ecology

Cyrille Violle, Brian J. Enquist, Brian J. McGill, Lin Jiang, Cécile H. Albert, Catherine Hulshof, Vincent Jung and Julie Messier

Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity

Alix A. Pfennigwerth, Joseph K. Bailey and Jennifer A. Schweitzer

Comparing intra- and inter-specific effects on litter decomposition in an old-field ecosystem

Gregory M. Crutsinger, Nathan J. Sanders, Aimée T. Classen
Species and populations

<table>
<thead>
<tr>
<th>Species</th>
<th>Pops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asters</td>
<td></td>
</tr>
<tr>
<td>Achillea millefolium (Yarrow)</td>
<td>3</td>
</tr>
<tr>
<td>Artemisia tridentata (Sagebrush)</td>
<td>6</td>
</tr>
<tr>
<td>Helianthus annuus (Sunflower)</td>
<td>4</td>
</tr>
<tr>
<td>Heterotheca villosa (False Golden Aster)</td>
<td>4</td>
</tr>
<tr>
<td>Dieteria canescens (Tansy Aster)</td>
<td>5</td>
</tr>
<tr>
<td>Packera multilobata (Lobeleaf groundsel)</td>
<td>6</td>
</tr>
<tr>
<td>Grasses</td>
<td></td>
</tr>
<tr>
<td>Elymus trachycaulus (Slender wheatgrass)</td>
<td>4</td>
</tr>
<tr>
<td>Hesperostipa comata (Needle and thread)</td>
<td>5</td>
</tr>
<tr>
<td>Muhlenbergia porterii (Bush Muhly)</td>
<td>3</td>
</tr>
<tr>
<td>Vulpia octoflora (Six-week fescue)</td>
<td>5</td>
</tr>
<tr>
<td>Bromus tectorum (Cheatgrass)</td>
<td>5</td>
</tr>
<tr>
<td>Agropyron cristatum (Crested wheatgrass)</td>
<td>5</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Plantago patagonica (Plantago)</td>
<td>6</td>
</tr>
</tbody>
</table>
Methods
Hesperostipa comata and Vulpia octoflora populations

<table>
<thead>
<tr>
<th>Species</th>
<th>Pops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asters</td>
<td></td>
</tr>
<tr>
<td>Achillea millefolium (Yarrow)</td>
<td>3</td>
</tr>
<tr>
<td>Artemisia tridentata (Sagebrush)</td>
<td>6</td>
</tr>
<tr>
<td>Helianthus annuus (Sunflower)</td>
<td>4</td>
</tr>
<tr>
<td>Heterotheca villosa (False Golden Aster)</td>
<td>4</td>
</tr>
<tr>
<td>Dieteria canescens (Tansy Aster)</td>
<td>5</td>
</tr>
<tr>
<td>Packera multilobata (Lobeleaf groundsel)</td>
<td>6</td>
</tr>
<tr>
<td>Grasses</td>
<td></td>
</tr>
<tr>
<td>Elymus trachycaulus (Slender wheatgrass)</td>
<td>4</td>
</tr>
<tr>
<td>Hesperostipa comata (Needle and thread)</td>
<td>5</td>
</tr>
<tr>
<td>Muhlenbergia porterii (Bush Muhly)</td>
<td>3</td>
</tr>
<tr>
<td>Vulpia octoflora (Six-week fescue)</td>
<td>5</td>
</tr>
<tr>
<td>Bromus tectorum (Cheatgrass)</td>
<td>5</td>
</tr>
<tr>
<td>Agropyron cristatum (Crested wheatgrass)</td>
<td>5</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Plantago patagonica (Plantago)</td>
<td>6</td>
</tr>
</tbody>
</table>
Hesperostipa comata and Vulpia octoflora populations

10-20 cm = RED
20-30 cm = YELLOW
30-40 cm = GREEN
40-50 cm = BLUE
Hesperostipa comata – Needle and thread

Ladybird Johnston Wildflower Center

Map showing locations HECO_AZNC_KV, HECO_UTC_TMR, HECO_UTC_KRR, and HECO_UTSW_SP.
Hesperostipa comata – Needle and thread grass

H. comata – Total Weight

H. comata – Root Mass Ratio

H. comata – Specific leaf area

H. comata – Specific root length

Population

- HECO_AZNC_KV
- HECO.UTC.KRR
- HECO.UTC.TMR
- HECO.UTC.UTEC_GR
- HECO.UTC.UTSW.SP

Precipitation

- 20-30 cm = YELLOW
- 30-40 cm = GREEN
- 40-50 cm = BLUE
Hesperostipa comata – Needle and thread grass

H. comata – Total Weight

H. comata – Root Mass Ratio

H. comata – Specific leaf area

H. comata – Specific root length

Population
- HECO_AZNC_KV
- HECO.UTC_KRR
- HECO.UTC_TMR
- HECO.UTC.Gr
- HECO.UTC.SW.SP

Precipitation
- 20-30 cm = YELLOW
- 30-40 cm = GREEN
- 40-50 cm = BLUE
Hesperostipa comata – Needle and thread grass

Fertilizer added

H. comata – Total Weight

H. comata – Root Mass Ratio

H. comata – Specific leaf area

H. comata – Specific root length

Population

- HECO_AZNC_KV
- HECO_UHC_KRR
- HECO_UHC_TMR
- HECO_UHC_UCEC_GR
- HECO_UHC_UTSW_SP

Precipitation
- 20-30 cm = YELLOW
- 30-40 cm = GREEN
- 40- 50 cm = BLUE
Hesperostipa comata – Needle and thread grass

Precipitation
- 20-30 cm = **YELLOW**
- 30-40 cm = **GREEN**
- 40-50 cm = **BLUE**

Population
- HECO_AZNC_KV
- HECO.Utc.C_KRR
- HECO.Utc.C_TMR
- HECO.Utc._TEC_GR
- HECO.Utc._TEC_GR
- HECO.Utc._TSW_SP

Fertilizer added
- cm/g
- cm²/g
- cm/g
Fertilizer added

Precipitation

10 - 20 cm = RED
20 - 30 cm = YELLOW
30 - 40 cm = GREEN

Vulpia octoflora – Six-week fescue

V. octoflora – Total Weight

V. octoflora – Root Mass Ratio

V. octoflora – Specific leaf area

V. octoflora – Specific root length

Population

- VUOC_AZSW_WB
- VUOC.UTCGRC
- VUOC.UTSE.IM
- VUOC.UTSE.LM
- VUOC.UTSW.HR

Precipitation
10-20 cm = RED
20-30 cm = YELLOW
30-40 cm = GREEN
Fertilizer added

Precipitation

10 - 20 cm = RED
20 - 30 cm = YELLOW
30 - 40 cm = GREEN

Vulpia octoflora – Six-week fescue
Vulpia octoflora – Six-week fescue

V. octoflora – Total Weight

V. octoflora – Root Mass Ratio

V. octoflora – Specific leaf area

V. octoflora – Specific root length

Population:
- **VUOC_AZSW_WB**
- **VUOC.UTC.GRC**
- **VUOC.UTSE.IM**
- **VUOC.UTSE.LM**
- **VUOC.UTSW.HR**

Precipitation:
- 10-20 cm = **RED**
- 20-30 cm = **YELLOW**
- 30-40 cm = **GREEN**
Fertilizer added

Vulpia octoflora – Six-week fescue

V. octoflora – Total Weight

V. octoflora – Root Mass Ratio

V. octoflora – Specific leaf area

V. octoflora – Specific root length

Population
- VUOC_AZSW_WB
- VUOC.UTC_GRC
- VUOC_UTSE.IM
- VUOC_UTSE.LM
- VUOC_UTSW.HR

Precipitation
- 10-20 cm = RED
- 20-30 cm = YELLOW
- 30-40 cm = GREEN
Take home messages
Take home messages

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others
Take home messages

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others
Take home messages

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others

- Populations differ from one another
 - Ranks of mean trait values depend on measurement timing
Take home messages

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others

- Populations differ from one another
 - Ranks of mean trait values depend on measurement timing
Take home messages

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others

- Populations differ from one another
 - Ranks of mean trait values depend on measurement timing

- Some populations have more within population variation than others and this can vary through time
 - Is this pattern of variation adaptive?
Take home messages

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others

- Populations differ from one another
 - Ranks of mean trait values depend on measurement timing

- Some populations have more within population variation than others and this can vary through time
 - Is this pattern of variation adaptive?
Take home messages

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others

- Populations differ from one another
 - Ranks of mean trait values depend on measurement timing

- Some populations have more within population variation than others and this can vary through time
 - Is this pattern of variation adaptive?

- Some populations appear to be more plastic
 - Is this pattern of plasticity adaptive?
Take home messages

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others

- Populations differ from one another
 - Ranks of mean trait values depend on measurement timing

- Some populations have more within population variation than others and this can vary through time
 - Is this pattern of variation adaptive?

- Some populations appear to be more plastic
 - Is this pattern of plasticity adaptive?
Thank you!
Questions?

<table>
<thead>
<tr>
<th>Species</th>
<th>Pops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asters</td>
<td></td>
</tr>
<tr>
<td>Achillea millefolium (Yarrow)</td>
<td>3</td>
</tr>
<tr>
<td>Artemisia tridentata (Sagebrush)</td>
<td>6</td>
</tr>
<tr>
<td>Helianthus annuus (Sunflower)</td>
<td>4</td>
</tr>
<tr>
<td>Heterotheca villosa (False Golden Aster)</td>
<td>4</td>
</tr>
<tr>
<td>Dieteria canescens (Tansy Aster)</td>
<td>5</td>
</tr>
<tr>
<td>Packera multilobata (Lobeleaf groundsel)</td>
<td>6</td>
</tr>
<tr>
<td>Grasses</td>
<td></td>
</tr>
<tr>
<td>Elymus trachycaulus (Slender wheatgrass)</td>
<td>4</td>
</tr>
<tr>
<td>Hesperostipa comata (Needle and thread)</td>
<td>5</td>
</tr>
<tr>
<td>Muhlenbergia porterii (Bush Muhly)</td>
<td>3</td>
</tr>
<tr>
<td>Vulpia octoflora (Six-week fescue)</td>
<td>5</td>
</tr>
<tr>
<td>Bromus tectorum (Cheatgrass)</td>
<td>5</td>
</tr>
<tr>
<td>Agropyron cristatum (Crested wheatgrass)</td>
<td>5</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Plantago patagonica (Plantago)</td>
<td>6</td>
</tr>
</tbody>
</table>