Seedling traits of two promising native grasses at early developmental stages

Magda Garbowski, Cynthia Brown, Danielle Johnston Colorado Plateau Native Plant Program Annual Meeting February 6, 2018

Traits and ecological processes

Growth Rate	Specific Leaf Area	Leaf Dry Matter Content	Height
g/day	cm²/g	Dry mass/saturated mass (g/g)	ст

Root Mass Fraction	Specific Root Length	Root Diameter	Total Root Length
Root mass /Total plant mass (g/g)	Length of roots / weight of roots (cm/g)	Average root diameter (mm)	Total root length (cm)

Traits and ecological processes

Growth Rate	Specific Leaf Area	Leaf Dry Matter Content	Height
g/day	cm²/g	Dry mass/saturated mass (g/g)	cm
- Positively associated with shade tolerance , negatively associated with drought tolerance (Suding 2003)	 High SLA has been linked to efficient carbon capture that leads to rapid growth and competitive ability Low SLA has been linked to leaf longevity and stress tolerance 	 High leaf dry matter content has been linked with nutrient conservation strategies (Bochet 2015) 	- Competitive ability, growth strategies

Root Mass Fraction	Specific Root Length	Root Diameter	Total Root Length
Root mass /Total plant mass (g/g)	Length of roots / weight of roots (cm/g)	Average root diameter (mm)	Total root length (cm)
 High RMF has been linked to survival in invaded systems (Leger 2015, 2017) High RMF has been linked to increased competitive ability 	- High SRL has been linked to high above ground growth rates (Laughlin 2010) and competitive ability (Funk 2016)	- High root diameter has been related to stress tolerance (Bennett 2016)	- Higher total root length has been linked to greater competitive abilities (Ravenek 2016)

Traits and ecological processes

Growth Rate	Specific Leaf Area	Leaf Dry Matter Content	Height
g/day	cm²/g	Dry mass/saturated mass (g/g)	cm
- Positively associated with shade tolerance , negatively associated with drought tolerance (Suding 2003)	 High SLA has been linked to efficient carbon capture that leads to rapid growth and competitive ability Low SLA has been linked to leaf longevity and stress tolerance 	 High leaf dry matter content has been linked with nutrient conservation strategies (Bochet 2015) 	- Competitive ability, growth strategies

Root Mass Fraction	Specific Root Length	Root Diameter	Total Root Length
Root mass /Total plant mass (g/g)	Length of roots / weight of roots (cm/g)	Average root diameter (mm)	Total root length (cm)
 High RMF has been linked to survival in invaded systems and increased competitive ability (Leger 2015, 2017) 	- High SRL has been linked to high above ground growth rates (Laughlin 2010) and competitive ability (Funk 2016)	- High root diameter has been related to stress tolerance (Bennett 2016)	- Higher total root length has been linked to greater competitive abilities (Ravenek 2016)

Seedling traits

- Seed and seedling traits can greatly inform recruitment outcomes (Larson 2015)
- Traits at early stages of growth may influence resource preemption and longerterm competitive advantages (Pattison & Goldstein 1998, Hely & Roxburgh 2005)
- Competitive advantages based on growth rates may be gained in the first 2-3 weeks post-germination (Reichmann et al. 2016)

Among population variation may influence community structure and ecosystem function (Des Roches, 2017)

The ecological importance of intraspecific variation

Simone Des Roches ^{1*}, David M. Post², Nash E. Turley³, Joseph K. Bailey⁴, Andrew P. Hendry⁵, Michael T. Kinnison⁶, Jennifer A. Schweitzer⁴ and Fric P. Palkovacs¹

Review

The return of the variance: intraspecific variability in community ecology

Research Article

Cyrille Violle^{1,2}, Brian J. Enquist^{1,3}, Brian J. McGill⁴, Lin Jiang⁵, Cécile H. Albert^{6,7}, Catherine Hulshof¹, Vincent Jung^{8,9} and Julie Messier¹

Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity

Basic and Applied Ecology

me 10, Issue 6, September 2009, Pages 535-543

Alix A. Pfennigwerth*, Joseph K. Bailey and Jennifer A. Schweitzer

Comparing intra- and inter-specific effects on litter decomposition in an old-field ecosystem

Gregory M. Crutsinger ^a ^A [⊠], Nathan J. Sanders ^a, Aimée T. Classen ^{a, b}

Species and populations

Hesperostipa comata and Vulpia octoflora populations

Hesperostipa comata and Vulpia octoflora populations

Vulpia octoflora – Six-week fescue

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others
- Populations differ from one another
 - Ranks of mean trait values depend on measurement timing

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others
- Populations differ from one another
 - Ranks of mean trait values depend on measurement timing

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others
- Populations differ from one another

- Ranks of mean trait values depend on measurement timing
- Some populations have more within population variation than others and this can vary through time
 - Is this pattern of variation adaptive?

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others
- Populations differ from one another
 - Ranks of mean trait values depend on measurement timing
- Some populations have more within population variation than others and this can vary through time
 - Is this pattern of variation adaptive?

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others
- Populations differ from one another

- Ranks of mean trait values depend on measurement timing
- Some populations have more within population variation than others and this can vary through time
 - Is this pattern of variation adaptive?
- Some populations appear to be more plastic
 - Is this pattern of plasticity adaptive?

- Variability among populations differs through time
 - Some time points may be more informative about seedling success than others
- Populations differ from one another

- Ranks of mean trait values depend on measurement timing
- Some populations have more within population variation than others and this can vary through time
 - Is this pattern of variation adaptive?
- Some populations appear to be more plastic
 - Is this pattern of plasticity adaptive?

Thank you! Questions?

Species	Pops	
Asters		
Achillea millefolium (Yarrow)	3	
Artemisia tridentata (Sagebrush)	6	
Helianthus annuus (Sunflower)	4	
<i>Heterotheca villosa</i> (False Golden Aster)	4	
Dieteria canescens (Tansy Aster)	5	
Packera multilobata (Lobeleaf groundsel)	6	
Grasses		
Elymus trachycaulus (Slender wheatgrass)	4	
Hesperostipa comata (Needle and thread)	5	
Muhlenbergia porterii (Bush Muhly)	3	
Vulpia octoflora (Six-week fescue)	5	
Bromus tectorum (Cheatgrass)	5	
Agropyron cristatum (Crested wheatgrass)	5	
Other		
Plantago patagonica (Plantago)	6	